top of page
fibroblasts in fibrin background.jpg

The Lesman Laboratory for Biomechanics & Tissue Engineering

Are you interested in research at the interface of biology and mechanics?

Finite element simulation stress map of two contracting cells embedded in a random fibrous network. Tensed fibers are coloured in red, while compressed fibers are coloured in blue


The environment of living cells is made of a complex 3D fibrous structure with unique mechanical properties. These properties – combined with the ability of cells to generate, sense and respond to forces- create a novel mechano-biological system that direct cells toward defined fates and organization. Our group strives to understand how mechanical forces regulate biological processes at the cell and tissue level. In our experiments, we embed cells in 3D hydrogels of various types and form and use live confocal microscopy for studying cell behavior in environments that mimic tissue structures. We use traction force microscopy, image analysis and finite element computer simulations to quantify and understand the mechanical interaction between cells and their environment. Our research provides mechanical tools to direct, control and manipulate cell behavior including organization of cells toward defined tissue structures, differentiation of stem cells, and regulation of disease states such as cancer. Our research is thus strongly related to the field of tissue engineering and regenerative medicine, and as such we always seek for developing new scaffold materials and ways to guide and enhance tissue formation.

Latest Publications

Probing Local Force Propagation in Tensed Fibrous Gels

A mechanism for favored directions of mechanical communication between cells in a tissue under external loads.

Our Team

News & Updates

bottom of page